e.g. Let
$$w$$
 be a non-deg z -form on M s.t. $dx = 0$
pointwise up is a non-deg bi-linear form a is closed.
Then given a function $H: M \rightarrow IR$, won-deg of w implies
 $dH \xrightarrow{w} X =: X_H$ (Hami Utimian
 $w(X_{H,-}) = -dH$
Then the I -par group of differ on M , associated to X_H , is
denoted by Q_H^{\pm} (called Hami Utimian isotopy).
Then this can be back to Linuville
 0 $L_{X_H} w = d I_{X_H} w + I_{X_H} dw = d (w(X_{H,-1}) = -d(dH) = 0.$
so w does not change at all along X_H , that is, $(Q_H^{\pm})^* w = w$.
 $U_{X_H} H = dH(X_H) = -w(X_H, X_H) = 0$
so H is constant along its own Hamiltonian vector field.